3.8 \(\int \frac{\text{sech}^{-1}(a x)^2}{x^3} \, dx\)

Optimal. Leaf size=90 \[ -\frac{1}{4} a^2 \text{sech}^{-1}(a x)^2-\frac{(1-a x) (a x+1)}{4 x^2}-\frac{(1-a x) (a x+1) \text{sech}^{-1}(a x)^2}{2 x^2}+\frac{\sqrt{\frac{1-a x}{a x+1}} (a x+1) \text{sech}^{-1}(a x)}{2 x^2} \]

[Out]

-((1 - a*x)*(1 + a*x))/(4*x^2) + (Sqrt[(1 - a*x)/(1 + a*x)]*(1 + a*x)*ArcSech[a*x])/(2*x^2) - (a^2*ArcSech[a*x
]^2)/4 - ((1 - a*x)*(1 + a*x)*ArcSech[a*x]^2)/(2*x^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0593064, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {6285, 5372, 3310, 30} \[ -\frac{1}{4} a^2 \text{sech}^{-1}(a x)^2-\frac{(1-a x) (a x+1)}{4 x^2}-\frac{(1-a x) (a x+1) \text{sech}^{-1}(a x)^2}{2 x^2}+\frac{\sqrt{\frac{1-a x}{a x+1}} (a x+1) \text{sech}^{-1}(a x)}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Int[ArcSech[a*x]^2/x^3,x]

[Out]

-((1 - a*x)*(1 + a*x))/(4*x^2) + (Sqrt[(1 - a*x)/(1 + a*x)]*(1 + a*x)*ArcSech[a*x])/(2*x^2) - (a^2*ArcSech[a*x
]^2)/4 - ((1 - a*x)*(1 + a*x)*ArcSech[a*x]^2)/(2*x^2)

Rule 6285

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> -Dist[(c^(m + 1))^(-1), Subst[Int[(a + b
*x)^n*Sech[x]^(m + 1)*Tanh[x], x], x, ArcSech[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] &
& (GtQ[n, 0] || LtQ[m, -1])

Rule 5372

Int[Cosh[(a_.) + (b_.)*(x_)^(n_.)]*(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_.)]^(p_.), x_Symbol] :> Simp[(x^(m -
n + 1)*Sinh[a + b*x^n]^(p + 1))/(b*n*(p + 1)), x] - Dist[(m - n + 1)/(b*n*(p + 1)), Int[x^(m - n)*Sinh[a + b*x
^n]^(p + 1), x], x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1]

Rule 3310

Int[((c_.) + (d_.)*(x_))*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(d*(b*Sin[e + f*x])^n)/(f^2*n
^2), x] + (Dist[(b^2*(n - 1))/n, Int[(c + d*x)*(b*Sin[e + f*x])^(n - 2), x], x] - Simp[(b*(c + d*x)*Cos[e + f*
x]*(b*Sin[e + f*x])^(n - 1))/(f*n), x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\text{sech}^{-1}(a x)^2}{x^3} \, dx &=-\left (a^2 \operatorname{Subst}\left (\int x^2 \cosh (x) \sinh (x) \, dx,x,\text{sech}^{-1}(a x)\right )\right )\\ &=-\frac{(1-a x) (1+a x) \text{sech}^{-1}(a x)^2}{2 x^2}+a^2 \operatorname{Subst}\left (\int x \sinh ^2(x) \, dx,x,\text{sech}^{-1}(a x)\right )\\ &=-\frac{(1-a x) (1+a x)}{4 x^2}+\frac{\sqrt{\frac{1-a x}{1+a x}} (1+a x) \text{sech}^{-1}(a x)}{2 x^2}-\frac{(1-a x) (1+a x) \text{sech}^{-1}(a x)^2}{2 x^2}-\frac{1}{2} a^2 \operatorname{Subst}\left (\int x \, dx,x,\text{sech}^{-1}(a x)\right )\\ &=-\frac{(1-a x) (1+a x)}{4 x^2}+\frac{\sqrt{\frac{1-a x}{1+a x}} (1+a x) \text{sech}^{-1}(a x)}{2 x^2}-\frac{1}{4} a^2 \text{sech}^{-1}(a x)^2-\frac{(1-a x) (1+a x) \text{sech}^{-1}(a x)^2}{2 x^2}\\ \end{align*}

Mathematica [A]  time = 0.041276, size = 54, normalized size = 0.6 \[ \frac{\left (a^2 x^2-2\right ) \text{sech}^{-1}(a x)^2+2 \sqrt{\frac{1-a x}{a x+1}} (a x+1) \text{sech}^{-1}(a x)-1}{4 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcSech[a*x]^2/x^3,x]

[Out]

(-1 + 2*Sqrt[(1 - a*x)/(1 + a*x)]*(1 + a*x)*ArcSech[a*x] + (-2 + a^2*x^2)*ArcSech[a*x]^2)/(4*x^2)

________________________________________________________________________________________

Maple [A]  time = 0.213, size = 77, normalized size = 0.9 \begin{align*}{a}^{2} \left ( -{\frac{ \left ({\rm arcsech} \left (ax\right ) \right ) ^{2}}{2\,{a}^{2}{x}^{2}}}+{\frac{{\rm arcsech} \left (ax\right )}{2\,ax}\sqrt{-{\frac{ax-1}{ax}}}\sqrt{{\frac{ax+1}{ax}}}}+{\frac{ \left ({\rm arcsech} \left (ax\right ) \right ) ^{2}}{4}}-{\frac{1}{4\,{a}^{2}{x}^{2}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsech(a*x)^2/x^3,x)

[Out]

a^2*(-1/2*arcsech(a*x)^2/a^2/x^2+1/2*arcsech(a*x)/a/x*(-(a*x-1)/a/x)^(1/2)*((a*x+1)/a/x)^(1/2)+1/4*arcsech(a*x
)^2-1/4/a^2/x^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{arsech}\left (a x\right )^{2}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsech(a*x)^2/x^3,x, algorithm="maxima")

[Out]

integrate(arcsech(a*x)^2/x^3, x)

________________________________________________________________________________________

Fricas [A]  time = 1.6307, size = 235, normalized size = 2.61 \begin{align*} \frac{2 \, a x \sqrt{-\frac{a^{2} x^{2} - 1}{a^{2} x^{2}}} \log \left (\frac{a x \sqrt{-\frac{a^{2} x^{2} - 1}{a^{2} x^{2}}} + 1}{a x}\right ) +{\left (a^{2} x^{2} - 2\right )} \log \left (\frac{a x \sqrt{-\frac{a^{2} x^{2} - 1}{a^{2} x^{2}}} + 1}{a x}\right )^{2} - 1}{4 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsech(a*x)^2/x^3,x, algorithm="fricas")

[Out]

1/4*(2*a*x*sqrt(-(a^2*x^2 - 1)/(a^2*x^2))*log((a*x*sqrt(-(a^2*x^2 - 1)/(a^2*x^2)) + 1)/(a*x)) + (a^2*x^2 - 2)*
log((a*x*sqrt(-(a^2*x^2 - 1)/(a^2*x^2)) + 1)/(a*x))^2 - 1)/x^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{asech}^{2}{\left (a x \right )}}{x^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asech(a*x)**2/x**3,x)

[Out]

Integral(asech(a*x)**2/x**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{arsech}\left (a x\right )^{2}}{x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsech(a*x)^2/x^3,x, algorithm="giac")

[Out]

integrate(arcsech(a*x)^2/x^3, x)